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Abstract

Recent work demonstrated the lack of robustness of op-
tical flow networks to physical patch-based adversarial at-
tacks. The possibility to physically attack a basic compo-
nent of automotive systems is a reason for serious concerns.
In this paper, we analyze the cause of the problem and show
that the lack of robustness is rooted in the classical aperture
problem of optical flow estimation in combination with bad
choices in the details of the network architecture. We show
how these mistakes can be rectified in order to make optical
flow networks robust to physical patch-based attacks. Ad-
ditionally, we take a look at global white-box attacks in the
scope of optical flow. We find that targeted white-box at-
tacks can be crafted to bias flow estimation models towards
any desired output, but this requires access to the input im-
ages and model weights. However, in the case of univer-
sal attacks, we find that optical flow networks are robust.
Code is available at https://github.com/lmb-
freiburg/understanding_flow_robustness.

1. Introduction
While deep learning has been conquering many new ap-

plication domains, it has become increasingly evident that
deep networks are vulnerable to distribution shifts. Adver-
sarial attacks are a particular way to showcase this vulner-
ability, where one finds the minimal input perturbation that
is sufficient to corrupt the network output. As the small per-
turbation moves the sample out of the training distribution,
the network is detached from its learned patterns and fol-
lows the suggestive pattern of the attack. Although many
methods have been proposed to improve robustness [34],
they only alleviate the problem but do not solve it [1].

While most white-box adversarial attacks are mainly of
academic relevance as they reveal the weaknesses of deep
networks w.r.t. out-of-distribution data, physical adversarial
attacks have serious consequences for safe deployment. In
physical attacks, the input is not perturbed artificially, but a
confounding pattern is placed in the real world to derail the
machine learning approach.
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Figure 1. Overview. Physical patch-based adversarial attacks
on optical flow can be avoided by minor architectural changes.
First row: attacked first frame. Second row: ground truth opti-
cal flow. Third and fourth rows: the resulting optical flow es-
timates of FlowNetC [8] and our proposed Robust FlowNetC.
FlowNetC is strongly affected by the adversarial patch, whereas
Robust FlowNetC is barely affected. For the robust version we
make simple design changes based on causes of the attack; see
Section 6.

Most work on adversarial attacks has been concerned
with recognition problems, and it looked for a while as if
correspondence problems are not a good target for adver-
sarial attacks. However, Ranjan et al. [25] showed that
they can successfully perform physical adversarial patch at-
tacks on optical flow networks. They optimized an adver-
sarial local patch that they can paste into both images, such
that large errors appear in the estimated optical flow field
even far away from the affected image location. They also
showed that the same adversarial patch worked on all vul-
nerable architectures, and even demonstrated physical at-
tacks, where the printed patch is physically added to a scene
and derails the optical flow estimation. Ranjan et al. found
that different network architectures show different levels
of vulnerability, whereas conventional optical flow meth-
ods are not vulnerable at all. They hypothesized the cause
for the vulnerability to be in the common encoder-decoder
architecture of FlowNet [8] and its derivatives but did not
provide a conclusive analysis.



In this paper, we continue their work by a deeper analysis
of the actual reason behind the vulnerability. In particular,
we answer the following questions.
(1) What is the true cause of adversarial patch attacks?
(2) Knowing the cause, can the patch-based attack also be
built without optimizing it for the particular network (zero
query black-box attack)?
(3) Can the severe vulnerability be avoided by a specific
design of the network architecture or by avoiding mistakes
in such design? For an overview see Figure 1.

After answering these questions positively, we turn to-
wards (global) adversarial perturbation attacks, i.e., attacks
that modify the whole image. We demonstrate that any tar-
get optical flow field can be generated; see Figure 11. On
the other hand, we show that this attack strategy does not ap-
ply to universal (input-agnostic) attacks, i.e., global attacks
on optical flow networks must exploit the structure of the in-
put images. This is different from unprotected recognition
networks, which are vulnerable to imperceptible universal
attacks [14, 22].

2. Related Work
Optical flow. For many decades, optical flow was es-

timated with approaches that minimize an energy function
consisting of a matching cost and a term that penalizes de-
viation from smoothness [4, 6, 7, 16].

Inspired by the success of CNNs on recognition tasks,
Dosovitskiy et al. [8] introduced estimation of optical flow
with a deep network, by training it end-to-end. They pro-
posed two network architectures – FlowNetS and FlowNetC
– of which the first is a regular encoder-decoder architec-
ture, whereas the second includes an additional correlation
layer that explicitly computes a cost volume for feature cor-
respondences between the two images – like the correlation
approaches from the very early days of optical flow estima-
tion, but integrated into the surrounding of a deep network
for feature learning and interpretation of the correlation out-
put. The concept of these architectures has been picked
up by many follow-up works that introduced, for instance,
coarse-to-fine estimation [24, 28], stacking [17], and multi-
scale 4D all-pairs correlation volumes combined with the
separate use of a context encoder as well as a recurrent unit
for iterative refinement [31]. Most of the architectures have
an explicit correlation layer like the original FlowNetC.

Adversarial attacks. The first works that brought up
the issue of vulnerability of deep networks to adversarial
examples were in the context of image classification and
generated the examples by solving a box-constrained op-
timization problem [30] or by perturbing the input images
with the gradient w.r.t. the input [11]. Su et al. [27] showed
that neural networks can be even attacked by just changing
a single pixel. Kurakin et al. [18] showed that adversar-
ial attacks also work in the physical world by printing out

adversarial examples. Several follow-up works have con-
firmed this behavior in other contexts [3,5,9]. Hendrycks et
al. [15] showed that adversarial examples can even exist in
natural, real-world images, which relates adversarial attacks
to the more general issue of out-of-distribution samples.

Works on adversarial attacks concentrated on various
sorts of recognition tasks, i.e., tasks where the output de-
pends directly on some feature representation of the in-
put image, such as classification, semantic segmentation,
single-view depth estimation, or image retrieval. Recently,
Ranjan et al. [25] showed that optical flow networks are
also vulnerable to adversarial patch attacks and can also
attack flow networks in a real-world setting. From their
experimental evidence, they hypothesized that the encoder-
decoder architecture is the main cause for the adversarial
vulnerability, whereas spatial pyramid architectures, as well
as classical optical flow approaches, are robust to patch-
based attacks. Further, they showed that flow networks are
not spatially invariant and the deconvolutional layers lead
to an amplification of activations as well as checkerboard
artifacts [23]. Recently, Wong et al. [33] showed that im-
perceptible perturbations added to each pixel individually
can significantly deteriorate the output of stereo networks.
They used adversarial data augmentation to make stereo
networks more robust. While stereo networks are vulner-
able to image-specific attacks, they showed that perturba-
tions do not transfer well to the next time step.

3. Adversarial Patch Attacks
Adversarial patch. Ranjan et al. [25] proposed attack-

ing flow networks by pasting a patch p of resolution h×w
onto the image frames (It, It+1) ∈ I of resolution H ×W
at the same location, rotation, and scaling. To craft an ad-
versarial patch for flow network F , they minimized the co-
sine similarity between the unattacked flow (u, v) and the
attacked one (ũ, ṽ). More formally, they optimized

p̂ = argmin
p

E(It,It+1)∼I,l∼L,δ∼T
(u, v) · (ũ, ṽ)

||(u, v)|| · ||(ũ, ṽ)||
,

(1)
where they randomly sample the location l ∈ L and affine
transformations δ ∈ T , i.e., rotation and scaling, to gener-
alize better to a real-world setting.

Vulnerability of existing optical flow methods. Ran-
jan et al. [25] found that different flow network architec-
tures show different degrees of vulnerability. Table 1 shows
the performance degradation of different architectures w.r.t.
patch-based attacks. FlowNetC is the only truly vulnerable
flow network, whereas the others are much more robust.

Ranjan et al. [25] attributed the vulnerability to the
encoder-decoder architecture and the higher robustness to
the spatial pyramid of PWC-Net and SPyNet. However,
there is a counterexample that proves this hypothesis wrong:



Table 1. Patch attacks on different flow networks. We show av-
erage unattacked and worst-case attacked End-Point-Error (EPE)
on the KITTI 2015 training dataset (for details see Section 4). We
only show results for larger patch sizes (102×102 and 153×153),
since smaller patches show simply a weaker effect [25].

Un- Attacked
Network attacked 102x102 153x153

EPE (2.1%) (5.8%)

FlowNetC [8] 11.50 52.66 51.99
FlowNetS [8] 14.33 17.35 17.92
FlowNet2 [17] 10.07 12.40 13.36
SPyNet [24] 24.26 27.47 25.84
PWC-Net [28] 12.55 18.08 17.70
RAFT [31] 5.86 8.48 9.01

FlowNetS – the direct counterpart of FlowNetC without cor-
relation layer – is a plain encoder-decoder architecture with-
out a spatial pyramid and, as Table 1 reveals, is quite robust
to the attack. Thus, the encoder-decoder architecture can-
not be the root cause for the vulnerability, even though the
decoder can be responsible for amplifying the effect.1

4. What Causes a Successful Patch Attack?

We build on the attack procedure of Ranjan et al. [25],
i.e., we also use KITTI 2012 [10] for patch optimization and
their white-box evaluation procedure on KITTI 2015 [21].
We show the importance of the spatial location and ana-
lyze the flow networks’ feature embeddings. Through this
analysis, we can trace the adversarial patch attacks back to
the classical aperture problem in optical flow. For sake of
brevity, we focus on FlowNetC, since it is the most vulnera-
ble flow network (Table 1), as well as PWC-Net and RAFT.
See Supplement Section 1 for all implementation details.

4.1. Spatial Location Heat Map

We analyze the impact of the spatial location of the ad-
versarial patch by computing the attacked End-Point-Error
(EPE) for each location over a coarse grid on the image.
For visualizations of the resulting heat map, we linearly in-
terpolate between values and clip them. This allows us to
identify three potential attacking scenarios: best case, me-
dian case, and worst case. For example, in the worst-case
scenario, we paste the patch at the image location with the
highest attacked EPE. Figure 2 shows that the sensitivity to
patch-based attacks depends much on the image and the lo-
cation of the patch. The sensitivity of PWC-Net and RAFT
can also sometimes be high. In particular, image regions
with large flow (e.g., fast-moving objects) can lead to a se-
vere deterioration of flow estimations.

1Like strong rain is the root cause for flooding but a dam (i.e., spatial
pyramid) can avoid the flooding despite strong rain to a certain degree.

Table 2. Replacing attacked features. Average EPE of the at-
tacked FlowNetC (left) and the average EPE when the respec-
tive features are replaced by those from the unattacked FlowNetC
(right) on the KITTI 2015 training dataset using adversarial and
uniform noise 102× 102 patches, respectively. See Figure 6
left for the encoder before the correlation layer in the original
FlowNetC [8].

Replace Without With
features of replacement replacement

conv3〈a,b〉 25.95 11.31
conv redir 25.95 28.36
corr 25.95 12.67

4.2. Correlations and Correlation Layer

To analyze the features of flow networks during the at-
tack, we visualize the unattacked and attacked features’
distributions using t-SNE [32] and compute the Maximum
Mean Discrepancy (MMD) [12] between the two distri-
butions. Comparing FlowNetC’s feature embeddings with
and without the attack reveals a large separation of the
unattacked and attacked feature distributions after the cor-
relation layer (Figure 3), while the distributions were quite
close before that layer. This is also indicated by the rapid
increase of MMD from 0.246 to 3.331. On the other hand,
the unattacked and attacked feature distributions of PWC-
Net and RAFT are close to each other before and after ap-
plying the correlation layer, and also the MMDs stay sim-
ilar. Hence, we hypothesize that the feature correlation of
FlowNetC causes the vulnerability to patch-based attacks.

We validate this hypothesis by replacing attacked fea-
tures with unattacked features to simulate what happens if
an architectural component of FlowNetC would be robust
w.r.t. patch-based attacks. We used a 102×102 patch with
uniform noise, pasted it at a random location, and saved
the feature maps. Afterward, we attacked FlowNetC with
an adversarial patch of the same size at the same location
and replaced the attacked feature maps with the previously
saved unattacked feature maps for different architectural
components. Table 2 shows that a robust correlation layer
(corr) could remove the effect of the attack. Trivially, a ro-
bust encoder before the correlation layer (conv3〈a,b〉) can
do the same. In contrast, if the convolution that bypasses
the correlation layer (conv redir) is made robust, the attack
still remains fully effective. This shows that the feature cor-
relation is the root cause, and also explains why FlowNetC’s
sibling FlowNetS is much more robust, as it has no correla-
tion layer.

4.3. Relationship to the Aperture Problem

While we have identified the correlation layer as the
cause on the network side, we do not yet know what is caus-
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Figure 2. Impact of spatial locations. Effect of the spatial location of an adversarial 102×102 patch. Best viewed in color.

(a) FlowNetC [8], MMD before: 0.246, MMD after: 3.331.

(b) PWC-Net [28], MMD before: 0.0, MMD after: 0.0.

(c) RAFT [31], MMD before: 0.158, MMD after: 0.003.

Figure 3. t-SNE embeddings of features from FlowNetC, PWC-
Net and RAFT. Left: t-SNE embeddings of features before corre-
lation layer. Right: t-SNE embeddings of features after correlation
layer. We use our best found adversarial 102×102 patch (2.1%
of the image size). Blue and red points correspond to unattacked
or attacked features, respectively. We visualize the t-SNE embed-
dings of features of PWC-Net and RAFT before or after applying
the correlation layer for the first time. Note that a larger MMD
indicates that the unattacked and attacked features are more sepa-
rable. Best viewed in color and with zoom.

ing it in the images. There is good reason to suspect that the
attack builds on self-similar patterns within the adversar-
ial patch; and indeed, they contain multiple self-similar pat-
terns (Figure 1). This suggests that patches trigger matching
ambiguities that show as a large active area in the correla-
tion output. Successive layers, that are supposed to interpret

Figure 4. Handcrafted patch. Patch is enlarged for visualization.

this output, successively spread the dominating ambiguous
signals into the wider neighborhood, whereas the true cor-
relation is outnumbered. This is related to the well-known
aperture problem in optical flow, where repetitive patterns
lead to an ambiguity in the optical flow and the receptive
field (the aperture) determines the perceived motion.

However, why are other flow networks, e.g., PWC-Net
or RAFT, which also have a correlation layer, much more
robust to the attack? We hypothesize that higher vulnera-
bility is due to the smaller size of FlowNetC’s aperture, i.e.,
a smaller receptive field before the correlation layer (i.e.,
31×31). More specifically, the larger receptive field size
at the (first) correlation layer in PWC-Net and RAFT (i.e.,
631×631 and 106×106) sees also areas of the image that are
not affected by the attack. In addition, RAFT uses all-pairs
correlation and correlation pooling, which further increases
its effective receptive field size. We hypothesize that this
helps their correlation layers to keep the correlation peaked.

5. Can We Attack Without Optimization?
To show that self-similar patterns within patches cause

the vulnerability, we handcraft a circular high-frequency
black and white vertically striped patch; see Figure 4. Note
that there is no need for optimization. We ablate the ingre-
dients of our handcrafted patch in Supplement Section 4.

Table 3 shows that FlowNetC is also vulnerable to our
handcrafted patch, providing further evidence that high cor-
relation within the patch causes matching ambiguities in the
correlation layer. The median performance of the other flow
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Figure 5. Handcrafted patch attack. Handcrafted 102×102 patch attack on all flow networks. We show the patch at the worst possible
spatial location for each flow network. Robust flow networks predict zero flow (white color) at the patch location (third column). See
Supplement Section 3 for additional examples.

Table 3. Handcrafted patch attack. Effect of the handcrafted patch attack (in pixel and percent of image size) on different flow networks.
We show average median and worst-case attacked EPE over a coarse grid of spatial locations of the patch on the KITTI 2015 training
dataset for each flow network.

Flow Unattacked 25x25 (0.1%) 51x51 (0.5%) 102x102 (2.1%) 153x153 (4.8%)
Network EPE Median Worst Median Worst Median Worst Median Worst

FlowNetC [8] 11.50 11.66 16.66 15.81 29.08 23.41 46.12 30.97 52.27
Robust FlowNetC 9.95 9.95 11.14 9.86 11.74 9.60 13.08 9.27 13.64
FlowNetS [8] 14.33 14.35 15.66 14.50 17.00 14.64 20.10 14.55 22.32
FlowNet2 [17] 10.07 10.11 13.80 10.56 19.10 12.08 21.63 13.84 24.35
SPyNet [24] 24.26 24.22 26.24 24.06 27.41 23.28 27.46 22.20 26.62
PWC-Net [28] 12.55 12.54 14.82 12.45 16.10 12.02 16.87 11.42 16.26
RAFT [31] 5.86 5.80 7.08 5.74 7.44 5.49 8.69 5.17 8.96

networks, also the proposed Robust FlowNetC (Section 6),
is not affected, as they limit the effect of the ambiguous
correlation signal to its local region or can even estimate
the correct zero flow motion in this region. However, all
flow networks are affected by the patch to some degree in
the worst-case scenario, i.e., when we place the patch at the
worst possible location in the image frames (Table 3 and
Figure 5). This is hard to exploit in a physical attack and is
similar to other optical flow estimation errors that naturally
appear locally in some difficult image frames.

6. Can the Vulnerability be Controlled?
Based on the previous analysis, we add corresponding

architectural (and training improvements) to FlowNetC and

show that this intervention also makes it robust to patch-
based attacks. The components we add to FlowNetC are
already included in most modern architectures and can be
regarded as the important ingredients that make an optical
flow network robust to self-similar patterns as exploited by
adversarial patch attacks. Complementary, we also show
that we can create a more vulnerable RAFT variant.

6.1. Architecture

We increase the receptive field before the correlation
layer by adding (spatial resolution preserving) convolu-
tional layers in each resolution level before the correlation
layer. Moreover, we replace 5×5 convolutional layers in
FlowNetC by 3× 3 convolutional layers. This allows us
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Figure 6. Modified encoder before the correlation layer for Robust FlowNetC. Left: original FlowNetC encoder [8]. Right: our Robust
FlowNetC encoder. Blocks show the name, kernel size, and number of filters. For Robust FlowNetC, the layers conv1-1, conv2-1, and
conv3-1 are used for downsampling and hence have a stride of 2.

Table 4. Overview over FlowNetC encoder variants. The very
first layer is always a 7×7 convolutional layer. See Figure 6 for
visualizations of the original FlowNetC [8] (second row) and our
Robust FlowNetC encoder (last row).

Kernel Convs per Receptive
size resolution level field

3 1 19
5 1 31
3 2 47
3 3 75
5 2 87
3 4 103

to use deeper encoders with a larger receptive field before
the correlation layer. Alternatively, we can use larger di-
lation rates for larger receptive fields (Supplement Section
5). We call the FlowNetC variant with kernel size 3 and 4
convolutional layers per resolution level Robust FlowNetC,
illustrated in Figure 6 right. For an ablation, we also created
other variants of FlowNetC; see Table 4.

6.2. Training Procedure

It has been shown that the training procedure is also an
important factor for good optical flow performance [17,29].
Since we showed in the previous section that the patch-
based attack is not a classical adversarial attack but simply
makes the local estimation problem harder, stronger perfor-
mance should also yield better robustness w.r.t. patch-based
attacks. Hence, for Robust FlowNetC we used the training
pipeline of RAFT, i.e., we use the AdamW optimizer [19],
one cycle scheduler [26], gradient clipping, same augmen-
tation pipeline, and also initialized the weights of the mod-
els with Kaiming initialization [13]. Different from RAFT’s
training procedure, we used a multiscale l2 loss, pre-train on
FlyingChairs [8] for 600k iterations with an initial learning
rate of 10−4 and then trained on FlyingThings3D [20] for
300k iterations with an initial learning rate of 10−5.

Attacked frame 1 Attacked frame 2

Ground truth Robust FlowNetC

Attacked frame 1 Attacked frame 2

Ground truth Robust FlowNetC

Figure 7. Moving patch between image frames. For each exam-
ple block; top row shows attacked first and second image frames.
Bottom row show ground truth and the predicted optical flow of
Robust FlowNetC. We apply random affine transformations, i.e.,
translation, rotation, and scaling, to the patch between the two im-
ages frames. Note that the patch can also move in the opposite
direction w.r.t. its neighborhood, making it even more adversarial.
Robust FlowNetC correctly estimates the optical flow. Note, how-
ever, that rotations of the patch are not estimated correctly and can
lead to slight estimation errors of the motion of the patch.

6.3. Evaluation

Figure 5 and Table 3 clearly show the effect of above
changes: Robust FlowNetC is as robust to adversarial patch
attacks as PWC-Net or RAFT. The handcrafted patch at-
tack rules out that this robustness is due to obfuscated gra-
dients [2]. See Supplement Section 6 for examples using
optimized patches. In Figure 7, we show a scenario where
the patch is allowed to (freely) move between image frames.
See Supplement Section 7 for results for a static patch. Fig-
ures 5 and 7 show that Robust FlowNetC correctly predicts
the flow whether the patch moves or not between the image
frames. The patch has only a negligible impact on the sur-



Figure 8. t-SNE embeddings of features from Robust
FlowNetC. Left: t-SNE embeddings of features before the cor-
relation layer (MMD: 0.012). Right: t-SNE embeddings of fea-
tures after the correlation layer (MMD: 0.007). Blue and red points
correspond to unattacked or attacked features, respectively. Best
viewed in color. In contrast to the original FlowNetC (Figure 3a),
the attacked and unattacked t-SNE embeddings stay well-aligned.
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Figure 9. Performance of FlowNetC variants with different re-
ceptive field sizes. We show both unattacked and attacked worst-
case EPE. Stars show results for the original FlowNetC. For op-
timized patches, we show results using the patch with the highest
attacked EPE after optimization over ten runs. Larger receptive
fields reduce the attacked worst-case EPE. We report the worst-
case attack w.r.t. location, i.e., there remains a small gap between
the attacked and the unattacked result, as for all networks; see Ta-
ble 3. The two local peaks correspond to the variants with 5× 5
kernel sizes; see Table 4.

rounding image region, even if we move the patch between
image frames. We also tested the l2 loss for patch opti-
mization against Robust FlowNetC, and it also did not lead
to any (significant) degradation in flow performance, i.e.,
we report worst-case EPE of 12.54 for a 102×102 patch.
Figure 8 shows that the embeddings between the attacked
and unattacked features are well-aligned – in contrast to the
original FlowNetC. Figure 9 shows that the improved ro-
bustness stems from larger receptive field sizes.

6.4. Pushing Vulnerability

In the previous subsections, we showed that we can make
FlowNetC robust by increasing its depth and, thus, its re-
ceptive field. In this section, we show the other direction by

Image overlay RAFT

Image overlay RAFT w/ FlowNetC Enc. w/o sep. Ctxt

Image overlay RAFT

Image overlay RAFT w/ FlowNetC Enc. w/o sep. Ctxt

Figure 10. Results for our vulnerable RAFT variant. For each
block; first column shows image overlays where we place the
patch at the worst location. Second column shows the predicted
optical flows of RAFT and its vulnerable variant. The vulnerable
RAFT variant is vulnerable to patch-based attacks.

making a previously robust flow network (i.e., RAFT) vul-
nerable to patch-based attacks by replacing its encoder with
FlowNetC’s original encoder before the correlation layer
(and removing the separate context encoder). Note that with
these changes, the architectural part before the cost volume
is the same as in FlowNetC. We followed RAFT’s training
strategy [31]. Table 5 and Figure 10 show that even with
robust parts after the correlation layer, i.e., iterative refine-
ment, there can be severe adversarial noise in the flow esti-
mates during an attack with our handcrafted patch.

7. Adversarial Perturbation Attacks
Recently, Wong et al. [33] showed that they could attack

stereo networks using commonly used (global) untargeted
adversarial perturbation attacks for recognition networks.
Their approach is also effective against flow networks (Sup-
plement Section 8). In the following, we propose how we
can make flow networks predict any desired flow estimate
by adding imperceptible adversarial perturbations, and also
investigate universal perturbation attacks. See Supplement
Section 1 for implementation details. Furthermore, in Sup-
plement Section 11, we show that we can make flow net-
works robust through adversarial data augmentation.

Targeted adversarial attacks. While Wong et al.
showed that they can disturb stereo networks’ estimations,
we show that we can make flow networks predict any de-
sired flow by adding only small additive perturbations (e.g.,
L∞ norm ϵ = 0.02). To craft perturbations, we used the
Iterative - Fast Gradient Sign Method (I-FGSM) [18] with
learning rate α = 0.002, l2 loss, and minimized toward a
target flow. Figure 11 shows that we can make flow net-
works predict an arbitrary target flow from the same or even
a completely different domain.



Table 5. Results for our vulnerable RAFT variant. We show average median and worst-case EPE over a coarse grid of spatial locations
of our handcrafted patch on the KITTI 2015 training dataset for different RAFT variants. Even though RAFT has robust architectural
ingredients, e.g., iterative refinement after the cost volume, we can substantially increase vulnerability by simple architectural changes
before the cost volume.

FlowNetC Without Con- Unattacked 25x25 (0.1%) 51x51 (0.5%) 102x102 (2.1%) 153x153 (4.8%)
Encoder text Encoder EPE Median Worst Median Worst Median Worst Median Worst

- - 5.86 5.80 7.08 5.74 7.44 5.49 8.69 5.17 8.96
- ✓ 6.88 6.78 9.09 6.65 9.35 6.43 10.09 6.10 11.31
✓ - 5.84 5.85 7.47 5.84 9.31 5.78 10.50 5.92 11.60
✓ ✓ 6.33 6.38 13.61 6.43 16.61 7.03 19.12 9.37 20.99

Figure 11. Targeted adversarial attacks. We can add adversar-
ial perturbations that make flow networks predict arbitrary flows -
in this case, a different flow from another scene from the KITTI
2015 training dataset or an arbitrary flow corresponding to an im-
age with the number 42. Note that the perturbations become more
effective as the number of steps of adversarial optimization in-
creases. For additional examples see Supplement Section 9.

Universal adversarial attacks. We adapted the adver-
sarial optimization of Ranjan et al. [25] to craft universal
adversarial perturbations. We used the I-FGSM attack with
five steps, learning rate α = 0.002, and l2 loss; all other
parts remain the same as for adversarial patch optimization.
Figure 12 shows that there is no severe drop in flow per-
formance for smaller L∞ norms; only for larger L∞ norms
does the flow performance drop significantly. We find that
(imperceptible) universal adversarial perturbations do not
retain the severe effect of white-box adversarial attacks.

8. Discussion

We have shown that self-similar patterns in conjunction
with the correlation layer explain the vulnerability of flow
networks to adversarial patch attacks. Self-similar patterns
are a well-known problem for optical flow estimation and
can be related to the aperture problem. In fact, we showed
that a simple handcrafted self-similar patch has almost the
same effect as an optimized adversarial patch.

As we understand the cause of the problem, there is a
reliable way to prevent it: increasing the depth, and thereby
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Figure 12. Universal adversarial attacks. We show EPE for uni-
versal adversarial attacks on KITTI 2015 training dataset for dif-
ferent L∞ norms (i.e., ϵ = {0.0, 0.02, 0.05, 0.2, 0.5}) and flow
networks. See exemplary images in Supplement Section 10.

increasing the receptive field size, such that the ambiguity
caused by the self-similar pattern gets resolved. Many mod-
ern networks already have a deep encoder before the corre-
lation layer with a large enough receptive field, and, hence
are robust to patch-based attacks via self-similar patterns.
Thanks to our analysis, this is not simply a coincidence but
can be explained.

We also showed that with targeted adversarial perturba-
tions, an attacker can produce virtually every desired flow.
We also find that universal adversarial perturbations do not
retain the effect of white-box adversarial attacks. This leads
to an interesting interpretation: well-designed flow net-
works are not vulnerable to adversarial perturbations them-
selves but to the superposition of image pairs and a corre-
sponding adversarial perturbation. In practice, this means
that flow networks are robust to adversarial attacks as long
as attackers do not have access to the image stream.
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