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Abstract. Detection of out-of-distribution (OoD) samples in the context
of image classification has recently become an area of interest and active
study, along with the topic of uncertainty estimation, to which it is closely
related. In this paper we explore the task of OoD segmentation, which
has been studied less than its classification counterpart and presents
additional challenges. Segmentation is a dense prediction task for which
the model’s outcome for each pixel depends on its surroundings. The
receptive field and the reliance on context play a role for distinguishing
different classes and, correspondingly, for spotting OoD entities. We
introduce MOoSe, an efficient strategy to leverage the various levels of
context represented within semantic segmentation models and show that
even a simple aggregation of multi-scale representations has consistently
positive effects on OoD detection and uncertainty estimation.
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1 Introduction

Imagine you see a pattern, an object, or a scene configuration you do not know.
You will identify it as novel and it will attract your attention. This ability to
deal with an open world and to identify novel patterns at all semantic levels is
one of the many ways how human perception differs from contemporary machine
learning. Most deep learning setups assume a closed world with a fixed set of
known classes to choose from. However, many real-world tasks do not match this
assumption. Very often, maximum deviations from the training samples are the
most interesting data points.

Accordingly, novelty/anomaly/out-of-distribution detection has attracted
more and more interest recently. Outside of data regimes with limited variation,
such as in industrial inspection [14, 50], the common approaches to identify
unseen patterns derive uncertainty estimates from an existing classification model
and mark samples with large uncertainty as novel or out-of-distribution [41, 31,
3, 27, 56]. This approach comes with a conflict between the classifier focusing
on features that help discriminate between the known classes and the need for
rich and diverse features that can identify out-of-distribution patterns. This is
especially true for semantic segmentation, where a pixel’s class is not only defined
by its own appearance, but also by the context it appears in. Based on context
information only and ignoring appearance, a segmentation model could assume
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Fig. 1: Our method obtains predictions based on diverse contextual information
from different dilated convolutions, exploiting the hierarchical structure of se-
mantic segmentation architectures. On the anomalous pixels (cyan in the ground
truth) the contextual predictions diverge, allowing us to improve upon the global
model’s uncertainty score, which is overconfident in classifying the object as a
car. From improved uncertainty we get better out-of-distribution detection. More
details in Figure 2 and Section 3.2.

that a large animal (or an oversized telephone, like in the example in Figure 1) in
the middle of the road is a vehicle, while based on local appearance only it could
believe that pictures on a billboard are, for example, actual people in the flesh.

In order to combine context and local appearance, modern segmentation
networks feature modules with different receptive fields and resolutions, designed
to extract diverse representations including different amounts of contextual cues.
While for known objects the different cues mostly align with the model’s notion
of a semantic class, in the case of novel objects the representations at multiple
context levels tend to disagree. This can be used as an indicator for uncertainty.
Indeed, our approach develops on this idea by having multiple heads as probes for
comprehensive multi-scale cues, and obtains an aggregated uncertainty estimate
for out-of-distribution (OoD) segmentation. We show that this strategy improves
uncertainty estimates over using a single global prediction and often even over
regular ensembles, while being substantially more efficient than the latter. It
also sets up the bar on the common benchmarks for OoD segmentation. We call
our model MOoSe, for Multi-head OoD Segmentation. Source code available at
https://github.com/MOoSe-ECCV22/moose_eccv2022.

2 Related Work

Out of Distribution Detection Out-of-distribution detection is closely related
to uncertainty estimation. Under the assumption that a model should be uncertain
about samples far from its training distribution, model uncertainty can be
used as a proxy score for detecting outliers [29, 37]. Several methods for OoD
detection, including ours, rely on an existing model trained on a semantic task
on the in-distribution data, such as image classification or segmentation [29,
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28]. Different techniques have been developed to improve outlier detection by
means of uncertainty scores, either at inference time [41, 28] or while learning
the representations [27, 31, 3, 56, 30].

Another set of methods for uncertainty estimation is inspired by Bayesian
neural networks, which produce probabilistic predictions [6]. For example Monte-
Carlo Dropout [21, 34] approximates the predictive distribution by sampling
a finite number of parameter configurations at inference time using random
dropout masks. Although arguably not strictly Bayesian, ensembles [37, 55] also
approximate the predictive distribution by polling a set of independently trained
models fixed at inference time. Attributes of the predictive distribution, such as
its entropy, can be used as a measure for uncertainty [53, 1].

Alternatively, one can directly model the distribution of the training data,
and the likelihood estimated by the resulting model can be used to detect
outliers [45, 62, 51, 35]. Other approaches rather rely on learning pretext tasks
on the in-distribution data as a proxy for density estimation. Examples of such
tasks are reconstruction [47, 42, 57, 36, 17] and classification of geometric image
transformations [22].

Dense OoD Detection Methods that are effective at recognizing outlier im-
ages do not always scale well to dense OoD detection, where individual pixels
in each image need to be classified as in-distribution or anomalous. A recent
work [28] has found that advanced methods like generative models [2, 25, 52]
and Monte-Carlo dropout [21] are outperformed by metrics derived from the
predictions of a pre-trained semantic segmentation network, such as the values
of the segmentation logits. Several recent works [23, 9, 4, 7] focus on the improve-
ment of such segmentation by-products. In particular, the practice of Outlier
Exposure [30], originally developed for recognition, has recently gained popularity
in dense anomaly detection: several approaches revolve around using outlier data
during training, either from a real data [9, 4, 54] or sampled from a generative
model [23, 36]. While our method does not need outlier exposure to work, we
show that it can be beneficially combined with it.

As mentioned above, deep ensembles [37] are a versatile tool and a gold
standard for uncertainty estimation, making them a popular choice for anomaly
detection [55, 38]. Their relative scalability and effectiveness made them a viable
option for uncertainty estimation in dense contexts, including anomaly segmenta-
tion [19, 20]: ensembles are a simple and almost infallible way of improving the
quality of uncertainty scores of neural networks.

At the core of ensemble techniques is diversity between models, which is
often provided by random weight initialization and data bootstrapping [37, 32],
sometimes by architectural differences [61]. While these sources of diversity are of
proven efficacy and versatility, they are generic and ignore the requirements of the
task at hand, introducing significant computational costs. Multi-headed ensembles
mitigate this drawback by sharing the largest part of the network and drawing
their diversity only from independent, lightweight heads [39, 40, 46]. Even though
it is related to multi-headed ensembles, our method exploits an additional source
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of diversity: leveraging a widespread architectural design specific to semantic
segmentation, MOoSe captures the variety of contextual information and receptive
field within the same model. This allows for performance improvements that
are equal or superior to those of bootstrapped ensembles, at a fraction of the
computational cost.
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Fig. 2: MOoSe: illustration of the multi-head architecture based on the
DeepLabV3 semantic segmentation model. During training (a) all the probes
learn standard semantic segmentation, while the rest of the network (pre-trained)
is unaffected. At test time (b) the uncertainties of all heads (contextual and
global) are pooled together into an improved scoremap for OoD detection.

3.1 Contextual Diversity in Semantic Segmentation Networks

Consider a semantic segmentation decoder based on the popular spatial pyramid
architecture [63, 10, 11, 13], i.e. containing either a Spatial Pyramid Pooling
(SPP [59]) or Atrous Spatial Pyramid Pooling (ASPP [10]) structure. Such
structures include a series of pooling or dilated convolutional operations applied
in parallel to a set of feature embeddings. We refer to these operations as spatial
pyramid modules. Each spatial pyramid module has a unique pooling scale or
receptive field, allowing for scale invariance and providing the decoder with
various degrees of context: the larger the receptive field the more global context
at the cost of a loss in detail. The outputs of the spatial pyramid modules are
concatenated and fed to a segmentation head that produces a single prediction.

In this section we propose a method for extracting the contextual diversity
between the representations produced by the different spatial pyramid modules.
By exploiting said diversity we are able to improve OoD segmentation perfor-
mance and network calibration without the need of expensive ensembling of
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multiple models. Our method is non-invasive with regard to the main semantic
segmentation task and lightweight in terms of computational cost, making it
suitable for real-world applications without affecting segmentation performance.
In addition, since our approach improves the uncertainty scores of an existing
model, it can be easily combined with other state of the art approaches.

3.2 Probing Contextual Diversity

We start from a generic semantic segmentation architecture featuring K spatial
pyramid modules F = {fc1 , ..., fcK}, each with a different context size ck, as
in Figure 2. The encoder features θ are fed to the pyramid modules producing
a set of contextual embeddings Φ = {ϕc1 , ...,ϕcK}, where ϕck

= fck(θ). The
segmentation output is produced by the global head hg, which takes all the
concatenated features Φ. We denote the output logits of the global head as
zg := hg(Φ).

Our method consists of a simple addition to this generic architecture, namely
the introduction of probes to extract context-dependent information from the main
model. We pair each spatial pyramid module fck with a contextual prediction
head hck , which is trained to produce segmentation logits zck = hck(ϕck

) from
the context features of size ck (and the global pooling features, see [11]). Given
the input image x, we denote the prediction distributions as:

p(ŷ|x, hg) = softmax(zh) and p(ŷ|x, hck) = softmax(zck) (1)

for the global and contextual heads respectively.
We train all the heads using a standard Cross Entropy loss given N classes

and the ground truth segmentation y (we drop the mean operation over the
spatial dimensions for simplicity):

LCE(x,y) = −
K∑

k=1

N∑
i=1

yi · log p(ŷi|x, hck), (2)

although any semantic segmentation objective could be used.
The contextual heads are designed to act as probes and extract informa-

tion from the context-specific representations. For this reason, we do not back-
propagate the gradients coming from the contextual heads to the rest of the
network, and only update the weights of the heads themselves. The spatial pyra-
mid modules are distinct operations, each with its specific scope depending on its
context size. By stopping the gradients before the spatial pyramid modules we
force each head to solve the same segmentation task but using different features,
preserving prediction diversity. As a byproduct, our architectural modifications
do not interfere with the rest of the network and the main segmentation task.

Head Architecture The architecture of the contextual heads is based on the
global head of the base segmentation model. For example, for DeepLabV3 it
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consists of a projection block to bring the number of channels down to 256, followed
by a sequence of d prediction blocks (3 × 3 convolution, batch normalization,
ReLU), plus a final 1 × 1 convolution for prediction. The head depth d can
be tuned according to the predictive power necessary to process contextual
information, depending on the difficulty of the dataset.

3.3 Out-of-Distribution Detection with MOoSe

A model for dense OoD detection should assign to each location in the input
image an anomaly score. To obtain per-pixel OoD scores we test three scoring
functions, applied to the outputs of the segmentation heads: maximum softmax
probability (MSP) [29], prediction entropy (H) [53] and maximum logit (ML) [28].
We adapt each scoring function to work with predictions from multiple heads. The
maximum softmax probability is computed on the average predicted distribution
over all the heads, including the global head:

SMSP = − max
i∈[1,N ]

[
1

K + 1

(
p(ŷi|x, hg) +

K∑
k=1

p(ŷi|x, hck)

)]
, (3)

Similarly, for the entropy we compute the entropy of the expected output distri-
bution:

SH = H
[

1

K + 1

(
p(ŷ|x, hg) +

K∑
k=1

p(ŷ|x, hck)

)]
, (4)

where H denotes the information entropy. For maximum logit we average the
logits over the different heads and compute their negated maximum:

SML = − max
i∈[1,N ]

[
1

K + 1

(
zg,i +

K∑
k=1

zck,i

)]
. (5)

All scores should be directly proportional to the model’s belief of a pixel belonging
to an anomalous object, therefore for MSP and ML the negatives are taken.

4 Experiments

In this section we evaluate our approach on out-of-distribution detection, com-
paring it to ensembles (Section 4.4) and to the state of the art (Section 4.5).

4.1 Datasets & Benchmarks

StreetHazards [28] is a synthetic dataset for semantic segmentation and OoD
detection. It features street scenes in diverse settings, created with the CARLA
simulation environment [18]. The 1500 test samples feature instances from 250
different anomalous objects, diverse in appearance, location, and size.
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The BDD-Anomaly [28] dataset is derived from the BDD100K [60] seman-
tic segmentation dataset by removing the samples containing instances of the
motorcycle, bicycle, and train classes, and using them as a test set for OoD seg-
mentation, yielding a 6280/910/810 training/validation/test split. BDD-Anomaly
and StreetHazards constitute the CAOS benchmark [28].

Fishyscapes - LostAndFound [49, 5] is a dataset for road obstacle detec-
tion, designed to be used in combination with the Cityscapes [15] driving dataset.
Its test split contains 1203 images of real street scenes featuring road obstacles,
whose presence is marked in the segmentation ground truth.

RoadAnomaly [42] consists of 60 real world images of diverse anomalous
objects in driving environments, collected from the internet. The images come
with pixel-wise annotations of the anomalous objects, making them suitable for
testing models trained on driving datasets.

Results for the anomaly track of the SegmentMeIfYouCan [8] benchmark can
be found in the supplementary material.

4.2 Evaluation Metrics

We evaluate OoD detection performance using the area under the precision-recall
curve (AUPR), and the false positive rate at 95% true positive rate (FPR95).
As is customary, anomalous pixels are considered positives. Other works include
results for the area under the ROC curve (AUROC), however the AUPR is to be
preferred to this metric in the presence of heavy class imbalance, which is the
case for anomaly segmentation [16].

Table 1: CAOS benchmark. Comparison between single model/global head
(Global), multi-head ensembles (MH-Ens), standard deep ensembles (DeepEns)
and MOoSe on dense out-of-distribution detection. The results are for DeepLabV3
and PSPNet models with ResNet50 backbones. All three scoring functions (max-
imum softmax probability (MSP), entropy (H), maximum logit (ML)) are con-
sidered. All results are percentages, best results are shown in bold

StreetHazards BDD-Anomaly
DeepLabV3 PSPNet DeepLabV3 PSPNet

Score fn. Method AUPR↑ FPR95 ↓ AUPR↑ FPR95 ↓ AUPR↑ FPR95 ↓ AUPR↑ FPR95 ↓

MSP Global 9.11 22.37 9.65 22.04 7.01 22.47 6.75 23.63
MH-Ens 9.69 21.40 9.84 22.49 7.55 25.50 8.07 23.41
DeepEns 10.22 21.09 10.61 20.75 7.64 21.53 8.52 21.31
MOoSe 12.53 21.05 11.28 21.94 8.66 22.49 8.11 24.09

H Global 11.89 22.07 12.28 21.77 10.23 20.64 9.89 21.69
MH-Ens 12.59 21.10 12.45 22.29 10.62 23.51 11.73 20.76
DeepEns 13.43 20.62 13.39 20.35 11.39 19.31 12.32 18.83
MOoSe 15.43 19.89 14.52 21.20 12.59 19.27 12.35 20.98

ML Global 13.57 23.27 13.43 27.71 10.69 15.60 10.68 16.79
MH-Ens 13.99 21.86 13.64 28.30 10.69 20.19 12.40 15.08
DeepEns 14.57 21.79 14.14 25.82 11.40 14.66 12.26 13.96
MOoSe 15.22 17.55 15.29 20.46 12.52 13.86 12.88 13.94
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4.3 Experimental Setup

MOoSe relies on semantic segmentation models to perform dense OoD detection.
For the experiments on StreetHazards and BDD-Anomaly we report results for
two convolutional architectures, (DeepLabV3 [10] and PSPNet [63], each with
ResNet50 and ResNet101 backbones) and one transformer based (Lawin [58],
see supplementary material). For the experiments on LostAndFound and Road-
Anomaly we use DeepLabV3+ [12] with a ResNet101 backbone, trained on
Cityscapes1 or BDD100k [60] respectively.

Training We build MOoSe on top of fully trained semantic segmentation net-
works, by adding the prediction heads and training them jointly for segmentation
on the respective dataset, using a standard pixel-wise cross-entropy loss. Although
nothing prevents from training the whole model together, for fairness of compari-
son we only apply the loss to the probes. In order to prevent any alteration to
the main model while training the heads, we stop gradient propagation through
the rest of the network and make sure that the normalization layers would not
update their statistics during forward propagation. The heads are trained for 80
epochs, or until saturation of segmentation performance (mIoU).

MOoSe introduces two hyperparameters: learning rate and depth d of the
contextual heads. By default we use d = 1 for the models trained on StreetHazards
and d = 3 otherwise. While the performance gains depend on these, we find that
our method is robust to configuration changes, as we show in an ablation study
in the supplementary material.

4.4 Comparison with Ensembles

In this section we compare MOoSe with the single prediction baseline (global
head) and with two types of ensembles. Deep ensembles [37] (DeepEns) consist of
sets of independent segmentation networks, each trained on a different random
subset of 67% of the original data, starting from a different random parameter
initialization [32]. Similarly, multi-head ensembles (MH-Ens) are trained on
random data subsets, but share the same encoder and only feature diverse
prediction heads, for increased efficiency.

We compare to ensembles with 5 members/heads to match the number of
heads in our method. Additionally, we pick the ensemble member with the median
AUPR performance to serve both as the single model baseline and as initialization
for MOoSe. The shared backbone of the multi-head ensembles also comes from
the same model.

Table 1 shows results for the CAOS benchmark (StreetHazards and BDD-
Anomaly) using DeepLabV3 and PSPNet as base architectures, with ResNet50 [26]
backbones. We report results for the three OoD scoring functions described in
Section 3.3; results for MOoSe are averaged over 3 runs, standard deviations are
1 Parameters available at:
https://github.com/NVIDIA/semantic-segmentation
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(a) Image (b) Ground truth (c) Entropy hg (d) Ent. MOoSe

(e) Segm. s1 (f) Segm. s12 (g) Segm. s24 (h) Segm. s36 (i) Segm. sg

Fig. 3: OoD segmentation & head contribution. Test image from the Street-
Hazards dataset: a street scene containing anomalous objects (indicated in cyan
in the ground truth (b)). The contextual predictions (e-h) diverge on the outliers,
improving the entropy score map (c, d). The example shows an interesting fail-
ure case: the street sign (in-distribution) on the right also sparks disagreement
between the heads, resulting in increased entropy and thus a false positive.

available in the supplementary material. For all datasets, architectures, scoring
functions, and metrics, MOoSe consistently outperforms its respective global head.
Similarly, MOoSe outperforms multi-head ensembles, as well as deep ensemble in
most cases, while having a smaller computational cost than both.

In accordance with what observed in other works [28], the maximum-logit
scoring function tends to outperform entropy, most notably in terms of FPR95 and
on the BDD-Anomaly dataset. Both scoring functions consistently outperform
maximum-softmax probability. Moreover, maximum-logit appears to combine
well with MOoSe by effectively reducing false positives. Results for models using
the ResNet101 backbone are available in the supplementary material.

Figure 3 shows an example for OoD segmentation on a driving scene. The
top row compares the entropy obtained using the global head (3c) and our
multi-head approach (3d). The probes of MOoSe disagree on the nature of the
anomalous objects in the image, and its aggregated entropy score is able to outline
the anomalous objects more clearly than the global head. However, prediction
disagreement also produces false positives for smaller inlier objects, such as the
street sign on the right, highlighting a possible failure mode of our approach.

Computational costs In Table 2 we compare our method against ensembles
in terms of computational costs, reporting the number of parameters of each
model and the estimated runtime of a forward pass. We consider DeepLabV3
and PSPNet with ResNet50 and MOoSe head depth 1. Deep ensembles have
the highest parameter count and runtime, 5 times that of a single network.
MOoSe compares favorably to both ensembles on all architectures. The larger size
and runtime of PSPNet compared to DeepLab is due to its higher dimensional
representations, which can be reduced with projection layers before the probes.
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Table 2: Computational costs. Estimated computational costs of MOoSe in
comparison with ensembles. We report the number of parameters (in millions) and
the estimated forward pass runtime on StreetHazards (in milliseconds), estimated
on a single Nvidia RTX2080Ti GPU using the PyTorch [48] benchmarking utilities

Architecture Single MH-Ens DeepEns MOoSe

DeepLabV3 parameters (M) 40 104 198 43
runtime (ms) 113 286 583 121

PSPNet parameters (M) 47 139 233 94
runtime (ms) 107 246 542 183

4.5 Comparison with the State of The Art

Here we compare MOoSe with the best approaches for dense OoD detection that
do not require negative training data (see Section 4.5).

The CAOS Benchmark On StreetHazards and BDD-Anomaly we compare
with TRADI [20], SynthCP [57], OVNNI [19], Deep Metric Learning (DML) [7],
and the approach by Grcic et al. [23] that uses outlier exposure with generated
samples. TRADI and OVNNI require multiple forward passes per sample, increas-
ing the evaluation run-time (or memory requirements) considerably. Table 3(a)
shows that MOoSe compares favorably to existing works on both datasets and
on all metrics. We note that, given its non-invasive nature, MOoSe is compatible
with other approaches, and can for example be combined with the loss of DML.

Table 3: State-of-the-art comparison. Left - CAOS benchmark: MOoSe in
combination with the max-logit scoring function, outperforms all other methods
on StreetHazards, except for DML in terms of FPR95. On BDD-Anomaly MOoSe
performs the best in both metrics. Right: MOoSe yields improvements on both
Fishyscapes LostAndFound (FS - LaF) and RoadAnomaly, but on the
former benchmark is outperformed by Standardized Max-Logits (Std.ML).

Street BDD
Hazards Anomaly

AUPR FPR95 AUPR FPR95

TRADI[20] 7.2 25.3 5.6 26.9
SynthCP[57] 9.3 28.4 - -
OVNNI[19] 12.6 22.2 6.7 25.0
Grcic[23] 12.7 25.2 - -
DML[7] 14.7 17.3 - -

MOoSe ML 15.22 17.55 12.52 13.86

FS - LaF RoadAnomaly
Method AUPR FPR95 AUPR FPR95

MSP Global 3.06 37.46 23.76 51.32
MOoSe 7.13 33.72 31.53 43.41

H Global 6.23 37.34 32.00 49.14
MOoSe 12.08 32.58 41.48 36.78

ML Global 10.25 37.45 37.86 39.03
MOoSe 13.64 32.32 43.59 32.12

Resynth. [42] 5.70 48.05 - -
DML [7] - - 37 37

Std.ML [33] 31.05 21.52 25.82 49.74

LostAndFound, RoadAnomaly We extend our evaluation of MOoSe to other
real world benchmarks, Fishyscapes LostAndFound and RoadAnomaly, using
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(a) Image (b) OoD G.T. (c) Entropy hg (d) Ent. MOoSe

Fig. 4: OoD segmentation. Examples on LostAndFound and RoadAnomaly,
anomalous objects shows in cyan in the second column. The first row shows
an example in which our model is able to recognize anomalous objects in their
entirety, where the global head fails. The second row shows a failure case, where
our model only marks the borders of the obstacle on the road and produces false
positives, performing worse than the global head. The example in the last row is
from RoadAnomaly: MOoSe detects the traffic cones better than the global head,
but introduces noise in the background and still fails to detect the manhole.

models trained on Cityscapes and BDD100k [60] respectively, as described in
Section 4.3. We report our results in Table 3(b) and include results for the
comparable (not needing negative training data) state-of-the-art methods DML,
Standardized Max-Logits [33] and Image Resynthesis [42]. Similarly to the CAOS
benchmark, we can observe that the adoption of MOoSe improves OoD detection
performance on both benchmarks, regardless of the chosen scoring function.
In the supplementary material we include results for the SegmentMeIfYouCan
benchmark (similar to RoadAnomaly), where Image Resynthesis is currently
SOTA. On the other hand, Table 3(b) shows that Image Resynthesis does not
perform well on LostAndFound. Standardized Max-Logits has remarkable results
on LostAndFound but not on RoadAnomaly, where MOoSe works best.

Figure 4 shows examples of OoD detection on LostAndFound and Road-
Anomaly. In the first example MOoSe improves over the entropy heatmap of the
global head. In the second example, however, it can be seen that our method still
fails to detect the obstacles and produces more false positives. Increased false
positives are visible in the background of the third example too, although here
MOoSe also improves the detection of some anomalous objects.

Outlier Exposure Several methods for anomaly segmentation rely on negative
training data from a separate source. While this technique introduces some
drawbacks, such as a reliance on the choice of the negative data and a potential
negative impact on segmentation, it has been shown to improve OoD detection
on the common benchmarks. Following the procedure described in [9] as "entropy
training", we investigate whether our method can also benefit from outlier
exposure. Indeed, results show that outlier exposure boosts MOoSe+ML to 53.19
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AUPR (+22%) and 24.38 FPR95 (-24%) on RoadAnomaly. Full results on all
scoring functions are available in the supplementary material.

5 Analysis

Our approach relies on a collection of different predictions to improve OoD detec-
tion. Previous literature on network ensembles puts the spotlight on diversity [43,
39], emphasizing that multiple estimators can be helpful only if their predictions
are diverse and each contributes with useful information for the cumulative
decision. In this section we address some points to better understand the working
principle of the method and verify its underlying hypotheses. Specifically, we
investigate: 1) the effect of MOoSe on prediction diversity, 2) whether contextual
aggregation can be responsible for prediction diversity, and 3) how this translates
into better OoD detection.

5.1 Quantifying Diversity: Variance and Mutual Information

We are interested in comparing MOoSe to the closely related ensembles in terms of
prediction diversity, of which a simple metric is variance. We compare the average
variance of the output distributions of MOoSe and ensembles on StreetHazards
and BDD-Anomaly validation, as reported in Table 4 (left). On both datasets
our method’s predictions have higher variance than both ensembles.

Variance, however, gives us no insights on what the predictions disagree upon,
and is therefore of limited interest. From the literature on Bayesian networks we
can borrow a more informative metric: the mutual information (MI) between the
model distribution and the output distribution [44]. Consider an ensemble of K
networks, or a multi-head model with K heads. Each model or head produces
a prediction p(ŷ|x, k). We can compute the mutual information between the
distribution of the models k and the distribution of their predictions as:

MI(ŷ, k|x) = H
[
1

K

K∑
k=1

p(ŷ|x, k)
]
− 1

K

K∑
k=1

H
[
p(ŷ|x, k)

]
, (6)

which is the entropy of the expected output distribution minus the average
entropy of the output distributions. MI is high for a sample x if the predictions
are individually confident but also in disagreement with each other. This tells us
how much additional information the diversity brings to the overall model: if all
the predictions are equally uncertain about the same samples they disagree on,
then aggregating them will not affect the aggregated uncertainty estimate.

In Table 4 (left) we report the average MI on StreetHazards and BDD-Anomaly
validation, comparing again MOoSe and ensembles. Similarly to variance, our
method’s predictions have higher MI than both ensemble types, indicating that
contextual probing not only produces more diversity in absolute terms, but also
that this diversity adds more information to the model’s predictive distribution.

Finally, in Table 4 (left) we report the Expected Calibration Error [24] of all
methods, to show that even if ensembles are better calibrated than the baseline,
it is MOoSe that performs the best at uncertainty estimation overall.
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Table 4: Left - variance and Mutual Information (MI) show higher diversity
for MOoSe than for ensembles, while lower ECE shows that our approach yields
better calibrated predictions. All metrics are computed on DeepLabV3-ResNet50.
Right - single-dilation: OoD detection results (AUPR) for single dilation
models (SD) with different dilation rates (1, 12, 24, 36), compared to standard
multi-dilation MOoSe. First row shows results for the global head, second row
adds the probes, bottom two rows show the absolute and relative improvement

StreetHazards BDD-Anomaly

Method Var.↑ MI↑ ECE↓ Var.↑ MI↑ ECE↓

Global - - .038 - - .123
MH-Ens 0.20 .004 .039 0.30 .022 .104
DeepEns 0.54 .012 .032 1.19 .054 .103

MOoSe 1.05 .034 .031 1.34 .062 .093

SD1 SD12 SD24 SD36 MOoSe

Var. 0.41 1.05 0.93 0.83 1.34

Global 8.2 8.1 9.1 8.6 10.2
+probes 10.1 10.1 10.6 10.5 13.1

Chng. 1.9 2.0 1.5 1.9 2.9
Chng. % 22.7 24.9 16.4 22.3 27.9

5.2 Context as a Source of Diversity

In the previous section we showed that our approach produces highly diverse
predictions. In this section we investigate the source of this diversity: our hypoth-
esis is that each head relies differently on contextual information depending on
the dilation rate of their respective spatial pyramid module, resulting in diverse
predictive behaviors.

We test this hypothesis by evaluating the ability of each head to perform
semantic segmentation when only contextual information is available. We corrupt
the pixels of the foreground classes in BDD-Anomaly2 with random uniform
noise while leaving the background pixels unchanged, then we evaluate how well
each head can still classify the corrupted foreground pixels by relying on the
context. An example of the process can be seen in Figure 5 (left). Figure 5 (right)
shows the mIoU on the noisy foreground as a percentage of the foreground mIoU
on the original clean image. We can observe that dilation rate and robustness to
foreground corruption are proportional to each other at multiple noise levels, as
further illustrated by the qualitative example in the figure. The different result
quality for different dilation rates confirm the validity of contextual aggregation
as a source of prediction diversity, as anticipated by the comparison with regular
(non-contextual) ensembles on variance and mutual information in Section 5.1.

5.3 Effect of Contextual Diversity on OoD Detection

The results presented in Section 4 already show that contextual probing improves
performance on the task. Moreover, results obtained from the application of
MOoSe to transformer-based models (7.3% average AUPR increase on StreetHaz-
ards across scoring functions), which are available in the supplementary material,
indicate that the principle is applicable across architectures and its gains are not
an artifact of CNNs.
2 Pole, traffic light, traffic sign, person, car, truck, bus.
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Fig. 5: Left - example of foreground corruption: the cars are corrupted
with noise and the head with the largest dilation rate (h36) can still largely
segment them, unlike the no-dilation head h1. Right - corruption robustness:
We evaluate semantic segmentation of each probe on the corrupted foreground
objects. The retained mIoU (mIoUcorrupt/mIoUclean) increases with dilation rate,
indicating more reliance on context. Results for BDD-Anomaly on DeepLabV3.

The last point to address is the contribution of contextual diversity to out-of-
distribution detection. To quantify this contribution, we performed an ablation
study removing receptive field diversity from DeepLabV3 by using the same
dilation rate for all the convolutions in the spatial pyramid module. We train
several versions of this single-dilation (SD) MOoSe, each with a different dilation
rate, and present the comparison with standard MOoSe in Table 4 (right). Firstly,
all single dilation models have lower prediction variance than regular MOoSe.
Secondly, although the single-dilation models still outperform their global head,
MOoSe yields larger gains than all SD models, both in absolute and relative
terms. While these results confirm that contextual diversity is crucial for the
success of our method, they also show that there are more contributing factors,
compatibly with the known benefits of ensembles.

6 Conclusion

In this work we proposed a simple and effective approach for improving dense out-
of-distribution detection by leveraging the properties of segmentation decoders to
obtain a set of diverse predictions. Our experiments showed that MOoSe yields
consistent gains on a variety of datasets and model architectures, and that it
compares favorably with computationally much more expensive ensembles. We
showed that our approach also outperforms other state-of-the-art approaches, and
that due to its simplicity it could be easily combined with them. Even though we
tested our method on various architectures, and despite the versatility of the main
idea, one current limitation of MOoSe is its reliance on a specific architectural
paradigm: the spatial pyramid. We also identified false positives among small
objects to be an inherent failure mode of our approach, which potentially could
be mitigated by combining MOoSe with alternative concepts that act at a single
contextual scale.



Probing Contextual Diversity for Dense Out-of-Distribution Detection 15

References

1. Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M.,
Fieguth, P., Cao, X., Khosravi, A., Acharya, U.R., et al.: A review of uncertainty
quantification in deep learning: Techniques, applications and challenges. arXiv
preprint arXiv:2011.06225 (2020)

2. Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Deep autoencoding models for
unsupervised anomaly segmentation in brain mr images. In: International MICCAI
Brainlesion Workshop. pp. 161–169. Springer (2018)

3. Bergman, L., Hoshen, Y.: Classification-based anomaly detection for general data.
In: International Conference on Learning Representations (2019)

4. Bevandić, P., Krešo, I., Oršić, M., Šegvić, S.: Simultaneous semantic segmentation
and outlier detection in presence of domain shift. In: German Conference on Pattern
Recognition. pp. 33–47. Springer (2019)

5. Blum, H., Sarlin, P.E., Nieto, J., Siegwart, R., Cadena, C.: The fishyscapes
benchmark: Measuring blind spots in semantic segmentation. arXiv preprint
arXiv:1904.03215 (2019)

6. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in
neural network. In: International Conference on Machine Learning. pp. 1613–1622.
PMLR (2015)

7. Cen, J., Yun, P., Cai, J., Wang, M.Y., Liu, M.: Deep metric learning for open world
semantic segmentation. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 15333–15342 (2021)

8. Chan, R., Lis, K., Uhlemeyer, S., Blum, H., Honari, S., Siegwart, R., Fua, P.,
Salzmann, M., Rottmann, M.: Segmentmeifyoucan: A benchmark for anomaly
segmentation (2021)

9. Chan, R., Rottmann, M., Gottschalk, H.: Entropy maximization and meta
classification for out-of-distribution detection in semantic segmentation. CoRR
abs/2012.06575 (2020), https://arxiv.org/abs/2012.06575

10. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE transactions on pattern analysis and machine intelligence
40(4), 834–848 (2017)

11. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

12. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with
atrous separable convolution for semantic image segmentation. In: ECCV (2018)

13. Cheng, B., Collins, M.D., Zhu, Y., Liu, T., Huang, T.S., Adam, H., Chen, L.C.:
Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic
segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 12475–12485 (2020)

14. Cohen, N., Hoshen, Y.: Sub-image anomaly detection with deep pyramid correspon-
dences. arXiv preprint arXiv:2005.02357 (2020)

15. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016)

16. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In:
Proceedings of the 23rd international conference on Machine learning. pp. 233–240
(2006)



16 Silvio Galesso, Maria Alejandra Bravo, Mehdi Naouar, and Thomas Brox

17. Di Biase, G., Blum, H., Siegwart, R., Cadena, C.: Pixel-wise anomaly detection in
complex driving scenes. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 16918–16927 (2021)

18. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: An open
urban driving simulator. In: Conference on robot learning. pp. 1–16. PMLR (2017)

19. Franchi, G., Bursuc, A., Aldea, E., Dubuisson, S., Bloch, I.: One versus all for
deep neural network incertitude (OVNNI) quantification. CoRR abs/2006.00954
(2020), https://arxiv.org/abs/2006.00954

20. Franchi, G., Bursuc, A., Aldea, E., Dubuisson, S., Bloch, I.: Tradi: Tracking deep
neural network weight distributions. In: European Conference on Computer Vision
(ECCV) 2020. Springer (2020)

21. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In: international conference on machine learning. pp.
1050–1059. PMLR (2016)

22. Golan, I., El-Yaniv, R.: Deep anomaly detection using geometric transformations.
In: NeurIPS (2018)

23. Grcić, M., Bevandić, P., Šegvić, S.: Dense open-set recognition with synthetic
outliers generated by real nvp. arXiv preprint arXiv:2011.11094 (2020)

24. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural
networks. In: International Conference on Machine Learning. pp. 1321–1330. PMLR
(2017)

25. Haselmann, M., Gruber, D.P., Tabatabai, P.: Anomaly detection using deep learning
based image completion. In: 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA). pp. 1237–1242. IEEE (2018)

26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

27. Hein, M., Andriushchenko, M., Bitterwolf, J.: Why relu networks yield high-
confidence predictions far away from the training data and how to mitigate the
problem. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 41–50 (2019)

28. Hendrycks, D., Basart, S., Mazeika, M., Mostajabi, M., Steinhardt, J., Song,
D.: Scaling out-of-distribution detection for real-world settings. arXiv preprint
arXiv:1911.11132 (2019)

29. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-
distribution examples in neural networks. Proceedings of International Conference
on Learning Representations (2017)

30. Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier
exposure. In: International Conference on Learning Representations (2018)

31. Hendrycks, D., Mazeika, M., Kadavath, S., Song, D.: Using self-supervised learning
can improve model robustness and uncertainty. Advances in Neural Information
Processing Systems (NeurIPS) (2019)

32. Ilg, E., Cicek, O., Galesso, S., Klein, A., Makansi, O., Hutter, F., Brox, T.: Uncer-
tainty estimates and multi-hypotheses networks for optical flow. In: Proceedings of
the European Conference on Computer Vision (ECCV). pp. 652–667 (2018)

33. Jung, S., Lee, J., Gwak, D., Choi, S., Choo, J.: Standardized max logits: A simple
yet effective approach for identifying unexpected road obstacles in urban-scene
segmentation. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). pp. 15425–15434 (October 2021)



Probing Contextual Diversity for Dense Out-of-Distribution Detection 17

34. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian segnet: Model uncertainty
in deep convolutional encoder-decoder architectures for scene understanding. In:
British Machine Vision Conference 2017, BMVC 2017 (2017)

35. Kirichenko, P., Izmailov, P., Wilson, A.G.: Why normalizing flows fail to detect
out-of-distribution data. arXiv preprint arXiv:2006.08545 (2020)

36. Kong, S., Ramanan, D.: Opengan: Open-set recognition via open data generation.
arXiv preprint arXiv:2104.02939 (2021)

37. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. In: NeurIPS (2017)

38. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-
of-distribution samples and adversarial attacks. Advances in neural information
processing systems 31 (2018)

39. Lee, S., Purushwalkam, S., Cogswell, M., Crandall, D., Batra, D.: Why m heads
are better than one: Training a diverse ensemble of deep networks. arXiv preprint
arXiv:1511.06314 (2015)

40. Li, H., Ng, J.Y.H., Natsev, P.: Ensemblenet: End-to-end optimization of multi-
headed models. arXiv preprint arXiv:1905.09979 (2019)

41. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image
detection in neural networks. In: International Conference on Learning Representa-
tions (2018)

42. Lis, K.M., Nakka, K.K., Fua, P., Salzmann, M.: Detecting the unexpected via image
resynthesis. International Conference On Computer Vision (ICCV) pp. 2152–2161
(2019). https://doi.org/10.1109/ICCV.2019.00224, http://infoscience.epfl.ch/
record/269093

43. Liu, L., Wei, W., Chow, K.H., Loper, M., Gursoy, E., Truex, S., Wu, Y.: Deep
neural network ensembles against deception: Ensemble diversity, accuracy and
robustness. In: 2019 IEEE 16th International Conference on Mobile Ad Hoc and
Sensor Systems (MASS). pp. 274–282. IEEE (2019)

44. Malinin, A., Mlodozeniec, B., Gales, M.: Ensemble distribution distillation. arXiv
preprint arXiv:1905.00076 (2019)

45. Nalisnick, E., Matsukawa, A., Teh, Y.W., Gorur, D., Lakshminarayanan, B.: Do deep
generative models know what they don’t know? arXiv preprint arXiv:1810.09136
(2018)

46. Narayanan, A.R., Zela, A., Saikia, T., Brox, T., Hutter, F.: Multi-headed neural
ensemble search. In: Workshop on Uncertainty and Robustness in Deep Learning
(UDL@ICML‘21) (2021)

47. Nguyen, D.T., Lou, Z., Klar, M., Brox, T.: Anomaly detection with multiple-
hypotheses predictions. In: International Conference on Machine Learning. pp.
4800–4809. PMLR (2019)

48. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In:
NIPS-W (2017)

49. Pinggera, P., Ramos, S., Gehrig, S., Franke, U., Rother, C., Mester, R.: Lost and
found: detecting small road hazards for self-driving vehicles. In: 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). pp. 1099–1106.
IEEE (2016)

50. Rudolph, M., Wandt, B., Rosenhahn, B.: Same same but differnet: Semi-supervised
defect detection with normalizing flows. In: Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision. pp. 1907–1916 (2021)



18 Silvio Galesso, Maria Alejandra Bravo, Mehdi Naouar, and Thomas Brox

51. Schirrmeister, R., Zhou, Y., Ball, T., Zhang, D.: Understanding anomaly detection
with deep invertible networks through hierarchies of distributions and features.
Advances in Neural Information Processing Systems 33 (2020)

52. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsu-
pervised anomaly detection with generative adversarial networks to guide marker
discovery. In: International conference on information processing in medical imaging.
pp. 146–157. Springer (2017)

53. Smith, L., Gal, Y.: Understanding measures of uncertainty for adversarial example
detection. arXiv preprint arXiv:1803.08533 (2018)

54. Vojir, T., Sipka, T., Aljundi, R., Chumerin, N., Reino, D.O., Matas, J.: Road
anomaly detection by partial image reconstruction with segmentation coupling. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
15651–15660 (2021)

55. Vyas, A., Jammalamadaka, N., Zhu, X., Das, D., Kaul, B., Willke, T.L.: Out-of-
distribution detection using an ensemble of self supervised leave-out classifiers. In:
Proceedings of the European Conference on Computer Vision (ECCV) (September
2018)

56. Winkens, J., Bunel, R., Roy, A.G., Stanforth, R., Natarajan, V., Ledsam, J.R.,
MacWilliams, P., Kohli, P., Karthikesalingam, A., Kohl, S., et al.: Contrastive
training for improved out-of-distribution detection. arXiv preprint arXiv:2007.05566
(2020)

57. Xia, Y., Zhang, Y., Liu, F., Shen, W., Yuille, A.L.: Synthesize then compare: De-
tecting failures and anomalies for semantic segmentation. In: European Conference
on Computer Vision. pp. 145–161. Springer (2020)

58. Yan, H., Zhang, C., Wu, M.: Lawin transformer: Improving semantic segmentation
transformer with multi-scale representations via large window attention. CoRR
abs/2201.01615 (2022), https://arxiv.org/abs/2201.01615

59. Yoo, D., Park, S., Lee, J.Y., So Kweon, I.: Multi-scale pyramid pooling for deep
convolutional representation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops. pp. 71–80 (2015)

60. Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: Bdd100k:
A diverse driving video database with scalable annotation tooling. arXiv preprint
arXiv:1805.04687 2(5), 6 (2018)

61. Zaidi, S., Zela, A., Elsken, T., Holmes, C., Hutter, F., Teh, Y.W.: Neural ensemble
search for performant and calibrated predictions. Workshop on Uncertainty and
Robustness in Deep Learning (UDL@ICML‘20) (2020)

62. Zhang, H., Li, A., Guo, J., Guo, Y.: Hybrid models for open set recognition. In:
European Conference on Computer Vision. pp. 102–117. Springer (2020)

63. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 2881–2890 (2017)


